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Background: Hippocampus segmentation on magnetic resonance imaging is of key importance for the diagnosis, 
treatment decision and investigation of neuropsychiatric disorders. Automatic segmentation is an active research 
field, with many recent models using deep learning. Most current state-of-the art hippocampus segmentation 
methods train their methods on healthy or Alzheimer’s disease patients from public datasets. This raises the 
question whether these methods are capable of recognizing the hippocampus on a different domain, that of 
epilepsy patients with hippocampus resection.

New Method: In this paper we present a state-of-the-art, open source, ready-to-use, deep learning based 
hippocampus segmentation method. It uses an extended 2D multi-orientation approach, with automatic pre-

processing and orientation alignment. The methodology was developed and validated using HarP, a public 
Alzheimer’s disease hippocampus segmentation dataset.

Results and Comparisons: We test this methodology alongside other recent deep learning methods, in two 
domains: The HarP test set and an in-house epilepsy dataset, containing hippocampus resections, named 
HCUnicamp. We show that our method, while trained only in HarP, surpasses others from the literature in both 
the HarP test set and HCUnicamp in Dice. Additionally, Results from training and testing in HCUnicamp volumes 
are also reported separately, alongside comparisons between training and testing in epilepsy and Alzheimer’s 
data and vice versa.

Conclusion: Although current state-of-the-art methods, including our own, achieve upwards of 0.9 Dice in HarP, 
all tested methods, including our own, produced false positives in HCUnicamp resection regions, showing that 
there is still room for improvement for hippocampus segmentation methods when resection is involved.
1. Introduction

The hippocampus is a small, medial, subcortical brain structure re-

lated to long and short term memory [1]. The hippocampus can be 
affected in shape and volume by different pathologies, such as the neu-

rodegeneration associated to Alzheimer’s disease [2], or surgical inter-

vention to treat temporal lobe epilepsy [3]. Hippocampal segmentation 
from magnetic resonance imaging (MRI) is of great importance for re-

search of neuropsychiatric disorders and can also be used in the preop-

eratory investigation of pharmacoresistant temporal lobe epilepsy [4]. 

✩ Source code: https://github .com /MICLab -Unicamp /e2dhipseg.
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The medical research of these disorders usually involves manual seg-

mentation of the hippocampus, requiring time and expertise in the field. 
The high-cost associated to manual segmentation has stimulated the 
search for effective automatic segmentation methods. Some of those 
methods, such as FreeSurfer [5], are already used as a starting point for 
a manual finer segmentation later [6].

While conducting research on epilepsy and methods for hippocam-

pus segmentation, two things raised our attention. Firstly, the use of 
deep learning and Convolutional Neural Networks (CNN) is in the 
spotlight, with most of the recent hippocampus segmentation methods 
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featuring CNNs. Secondly, many of these methods rely on publicly avail-

able datasets for training and evaluating and therefore have access only 
to healthy scans, or patients with Alzheimer’s disease. This raises the 
concern that automated methods might only be prepared to deal with 
features present in the public Alzheimer’s and healthy subjects datasets, 
such as ADNI and the Multi Atlas Labeling Challenge (MALC).

Considering these facts, we present an improved version of our 
own deep learning based hippocampus segmentation method [25], 
compared with other recent methods [7, 8, 9]. We use the public 
Alzheimer’s HarP dataset for training and initial testing comparisons 
with other methods. As an additional test dataset, an in-house epilepsy 
dataset named HCUnicamp is used. It contains scans from patients with 
epilepsy (pre and post surgical removal of hippocampus), with different 
patterns of atrophy compared to that observed both in the Alzheimer’s 
data and healthy subjects. It is important to note that HCUnicamp is not 
involved in our method’s training or methodological choices, to allow 
for fair comparisons with other methods. Without comparing to other 
methods, we also report results of involving HCUnicamp epilepsy vol-

umes in training.

1.1. Contributions

In summary, the main contributions of this paper are as follows:

• A readily available hippocampus segmentation methodology under 
the MIT license, consisting of an ensemble of 2D CNNs coupled 
with traditional 3D post processing, achieving state of the art per-

formance in HarP public data, and using recent advancements from 
the deep learning literature.

• An evaluation of recent hippocampus segmentation methods in our 
epilepsy test dataset, HCUnicamp, that includes post-operatory im-

ages of patients without one of the hippocampi. In this evaluation, 
our method is only trained in public HarP volumes, therefore our 
methodology has no bias related to this task. We show that our 
method is also superior in this domain, although no method was 
able to achieve more than 0.8 Dice in this dataset, according to our 
manual annotations. As far as we know, that has not been explored 
before with recent Deep Learning methods.

• A final experiment includes epilepsy HCUnicamp volumes in train-

ing, without changing the methodology and with no comparisons 
to other methods, which resulted in better performance on epilepsy 
cases. The effects of mixing data from both datasets in training are 
explored.

This paper is organized as follows: Section 2 presents a literature 
review of recent deep learning based hippocampus segmentation meth-

ods. Section 3 introduces more details to the two datasets involved 
in this research. A detailed description of our hippocampus segmen-

tation methodology is in Section 4. Section 5 has experimental results 
from our methodology development, qualitative and quantitative com-

parisons with other methods in HarP and HCUnicamp, and results of 
involving HCUnicamp volumes in training. Sections 6 and 7 have, re-

spectively, extended discussion of those results and conclusion. More 
details to the training and hyperparameter optimization process are in 
the appendix.

2. Hippocampus segmentation with deep learning

Before the rise of deep learning methods in medical imaging segmen-

tation, most hippocampus segmentation methods used some form of 
optimization of registration and deformation to atlas(es) [5, 10, 11, 12, 
13, 14]. Even today, medical research uses results from FreeSurfer [5], 
a high impact multiple brain structures segmentation work, available 
as a software suite. Those atlas-based methods can produce high qual-

ity segmentations, taking, however, around 8 hours in a single vol-

ume. Lately, a more time efficient approach appeared in the literature, 
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namely the use of such atlases as training volumes for CNNs. Deep learn-

ing methods can achieve similar overlap metrics while predicting results 
in a matter of seconds per volume [7, 8, 15, 16, 17, 18, 19].

Recent literature on hippocampus segmentation with deep learning 
is exploring different architectures, loss functions and overall method-

ologies for the task. One approach that seems to be common to most 
of the studies involves the combination of 2D or 3D CNNs, and patches 
as inputs in the training phase. Note that some works focus on hip-

pocampus segmentation, while some attempt segmentation of multiple 
neuroanatomy. Following, a brief summary of each of those works.

Chen et al. [15] reports 0.9 Dice [20] in 10-fold 110 ADNI [2] vol-

umes with a novel CNN input idea. Instead of using only the triplanes as 
patches, it also cuts the volume in six more diagonal orientations. This 
results in 9 planes, that are fed to 9 small modified U-Net [21] CNNs. 
The ensemble of these U-Nets constructs the final result.

Xie et al. [16] trains a voxel-wise classification method using tri-
planar patches crossing the target voxel. They merge features from 
all patches into a Deep Neural Network with a fully connected clas-

sifier alongside standard use of ReLU activations and softmax [22]. 
The training patches come only from the approximate central area the 
hippocampus usually is, balancing labels for 1:1 foreground and back-

ground target voxels. Voxel classification methods tend to be faster than 
multi-atlas methods, but still slower than Fully Convolutional Neural 
Networks.

DeepNat from Wachinger et al. [17] achieves segmentation of 25 
structures with a 3D CNN architecture. With a hierarchical approach, 
a 3D CNN separates foreground from background and another 3D CNN 
segments the 25 sub-cortical structures on the foreground. Alongside 
a proposal of a novel parametrization method replacing coordinate 
augmentation, DeepNat uses 3D Conditional Random Fields as post-

processing. The architecture is a voxel-wise classification, taking into 
account the classification of neighbor voxels. DeepNat mainly focuses 
on the MALC dataset, achieving around 0.86 Dice in hippocampus seg-

mentation.

Thyreau et al. [8]’s model, named Hippodeep, uses CNNs trained in 
a region of interest (ROI). However, where we apply one CNN for each 
plane of view, Thyreau et al. uses a single CNN, starting with a planar 
analysis followed by layers of 3D convolutions and shortcut connec-

tions. This study used more than 2000 patients, augmented to around 
10000 volumes with augmentation. Initially the model is trained with 
FreeSurfer segmentations, and later fine-tuned using volumes which 
the author had access to manual segmentations, the gold standard. 
Thyreau’s method requires MNI152 registration of input data, which 
adds around a minute of computation time, but the model is generally 
faster than multi-atlas or voxel-wise classification, achieving general-

ization in different datasets, as verified by Nogovitsyn et al. [23].

QuickNat from Roy et al. [7] achieves faster segmentations than 
DeepNat by using a multiple CNN approach instead of voxel-wise clas-

sification. Its methodology follows a consensus of multiple 2D U-Net 
like architectures specialized in each slice orientation. The use of 
FreeSurfer [5] masks over hundreds of public data to generate silver 
standard annotations allows for much more data than usually available 
for medical imaging. Later, after the network already knows to local-

ize the structures, it is finetuned to more precise gold standard labels. 
Inputs for this method need to conform to the FreeSurfer format.

Ataloglou et al. [18] recently displayed another case of fusion of 
multiple CNN outputs, specialized into axial, coronal and sagittal ori-

entations, into a final hippocampus segmentation. They used U-Net 
like CNNs specialized in each orientation, followed by error correc-

tion CNNs, and a final average fusion of the results. They went against 
a common approach in training U-Nets of using patches during data 
augmentation, instead using cropped slices. This raises concerns about 
overfitting to the used dataset, HarP [24], supported by the need of 
finetuning to generalize to a different dataset.

Dinsdale et al. [19] mixes knowledge from multi-atlas works with 
deep learning, by using a 3D U-Net CNN to predict a deformation field 
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from an initial binary sphere to the segmentation of the hippocampus, 
achieving around 0.86 DICE on Harp. Interestingly, trying an auxiliary 
classification task did not improve segmentation results.

It is known that deep learning approaches require a relatively large 
amount of varied training data. Commonly used forms of increasing 
the quantity of data in the literature include using 2D CNNs over re-

gions (patches) of slices, with some form of patch selection strategy. 
The Fully Convolutional Neural Network (FCNN) U-Net [21] architec-

ture has shown potential to learn from relatively small amounts of data 
with their decoding, encoding and concatenation schemes, even work-

ing when used with 3D convolutions directly in a 3D volume [9].

Looking at these recent works, one can confirm the segmentation 
potential of the U-Net architecture, including the idea of an ensemble 
of 2D U-Nets instead of using a single 3D one, as we [25], some si-
multaneous recent work [7, 18], or even works in other segmentation 
problems [26] presented. In this paper, some of those methods were re-

produced for comparison purposes in our in-house dataset, namely [7, 
8], including a 3D UNet architecture test from [9].

As far as we know, there is no study applying recent deep learn-

ing methods trained on public data, such as HarP and MALC, to MRI 
scans of epilepsy including hippocampus resection cases. We also in-

clude, separately, an attempt to train on such data.

3. Data

This study uses mainly two different datasets: one collected locally 
for an epilepsy study, named HCUnicamp; and one public from the 
ADNI Alzheimer’s study, HarP. HarP is commonly used in the litera-

ture as a hippocampus segmentation benchmark. The main difference 
between the datasets is, the lack of one of the hippocampi in 70% of the 
scans from HCUnicamp, as these patients underwent surgical removal 
(Fig. 1).

Although our method needs input data to be in the MNI152 [27] 
orientation, data from those datasets are in native space and are not 
registered. We provide an automatic orientation correction by rigid reg-

istration as an option when predicting in external volumes, to avoid 
orientation mismatch problems.

3.1. HarP

This methodology was developed with training and validation on 
HarP [24], a widely used benchmark dataset in the hippocampus seg-

mentation literature. HarP uses data from the Alzheimer’s disease Neu-

roimaging Initiative (ADNI) database (adni .loni .usc .edu). The ADNI was 
launched in 2003 as a public-private partnership, led by Principal In-

vestigator Michael W. Weiner, MD. The primary goal of ADNI has 
been to test whether serial magnetic resonance imaging (MRI), positron 
emission tomography (PET), other biological markers, and clinical and 
neuropsychological assessment can be combined to measure the pro-

gression of mild cognitive impairment (MCI) and early Alzheimer’s 
disease (AD).

The full HarP release contains 135 T1-weighted MRI volumes. 
Alzheimer’s disease classes are balanced with equal occurrence of con-

trol normal (CN), mild cognitive impairment (MCI) and Alzheimer’s

disease (AD) cases [2]. Volumes were minmax intensity normalized be-

tween 0 and 1, and no volumes were removed. Training with stratified 
hold-out was performed with 80% training, 10% validation and 10% 
testing, while k-Folds, when used, consisted of 5 folds, with no overlap 
on the test sets.

3.2. HCUnicamp

HCUnicamp was collected inhouse, by personnel from the Brazilian 
Institute of Neuroscience and Neurotechnology (BRAINN) at UNICAM-

P’s Hospital de Clínicas. This dataset contains 190 T1-weighted 3T MRI 
3

Fig. 1. (a) 3D rendering of the manual annotation (in green) of one of the HarP 
dataset volumes. In (b), a coronal center crop slice of the average hippocampus 
mask for all volumes in HarP (green) and HCUnicamp (red), shows different 
head alignment. Zero corresponds to the center. (c) Sagittal, (d) Coronal and 
(e) Axial HCUnicamp slices from a post-operative scan with annotations in red.

acquisitions, in native space. 58 are controls and 132 are epilepsy pa-

tients. From those epilepsy images, 70% had one of the hippocampi 
surgically removed, resulting in a very different shape and texture than 
what is commonly seen in public datasets (Fig. 1). More details about 
the surgical procedure can be found in [3, 4]. All volumes have manual 
annotations of the hippocampus, performed by one rater. The voxel in-

tensity is minmax normalized, between 0 and 1, per volume. This data 
acquisition and use was approved by an Ethics and Research Committee 
(CEP/Conep, number 3435027).

A comparison between the datasets can be seen in Fig. 1. The differ-

ence in mean mask position due to the inclusion of neck in HCUnicamp 
is notable, alongside with the lower presence of left hippocampus labels 
due to surgical intervention for epilepsy (Fig. 1b).

To investigate the performance of different methods in terms of deal-

ing with the absence of hippocampus and unusual textures, we used the 
whole HCUnicamp dataset (considered a different domain) as a final 
test set. Our methodology was only tested in this dataset at the end, 
alongside other methods. Results on HCUnicamp were not taken into 
consideration for our method’s methodological choices, to allow for fair 
comparisons with other methods, treating this data as a true final test 
set.

A final additional experiment attempts to learn from the epilepsy 
data, dividing HCUnicamp in a balanced hold-out of 70% training, 10% 
validation and 20% testing. These subsets are called HCU-Train, HCU-

Validation and HCU-Test for clarity.

4. Segmentation methodology

In this section, the general methodology (Fig. 2) for our hippocam-

pus segmentation method is detailed. Three orientation specialized 2D 
U-Net CNNs are utilized, inspired by Lucena et al.’s work [26]. The ac-

tivations from the CNNs are merged into an activation consensus. Each 
network’s activations for a given input volume are built slice by slice. 
The three activation volumes are averaged into a consensus volume, 
which is post-processed into the final segmentation mask.

http://adni.loni.usc.edu
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Fig. 2. The final segmentation volume is generated by taking into account activations from three FCNNs specialized on each 2D orientation. Neighboring slices are 
taken into account in a multi-channel approach. Full slices are used in prediction time, but training uses patches.
The basic structure of our networks is inspired by the U-Net FCNN 
architecture [21]. However, some modifications based on other success-

ful works were applied to the architecture (Fig. 3). Those modifications 
include: instead of one single 2D patch as input, two neighbor patches 
are concatenated leaving the patch corresponding to the target mask in 
the center [28]. Residual connections based on ResNet [29] between 
the input and output of the double convolutional block were added, as 
1x1 2D convolutions to account for different number of channels. Batch 
normalization was added to each convolution inside the convolutional 
block, to accelerate convergence and facilitate learning [30]. Also, all 
convolutions use padding to keep dimensions and have no bias. This 
works uses VGG11 [31] weights in the encoder part of the U-Net archi-

tecture, as in [32].

During prediction time, slices for each network are extracted with 
a center crop. When building the consensus activation volume, the re-

sulting activation is padded back to the original size. For training, this 
method uses patches. Patches are randomly selected in runtime. Patches 
can achieve many possible sizes, as long as it accommodates the number 
of spatial resolution reductions present in the network.

A pre-defined percentage of the patches is selected from a random 
point of the brain, allowing for learning of what structures are not the 
hippocampus. Those are called negative patches. On the other hand, 
positive patches are always centered on a random point of the hip-

pocampus border. In a similar approach to Pereira et al. [28]’s Extended 
2D, adjacent patches (slices on evaluation) are included in the network’s 
input as additional channels (Fig. 2). The intention is for the 2D net-

work to take into consideration volumetric information adjacent to the 
region of interest, hence the name for the method, Extended 2D Consen-

sus Hippocampus Segmentation (E2DHipseg). This approach is inspired 
by how physicians compare neighbor slices in multiview visualization 
when deciding if a voxel is part of the analyzed structure or not.

Data augmentation is used to improve our dataset variance and 
avoid overfitting. All augmentations perform a random small runtime 
modification to the data. Random augmentations include intensity mod-

ification ([−0.05, 0.05]), rotation and scale ([−10, 10]) and gaussian noise 
with 0 mean and 0.0002 variance.

4.1. Loss function

Dice [20] is an overlap metric widely used in the evaluation of seg-

mentation applications. Performance in this paper is mainly evaluated 
4

Fig. 3. Final architecture of each modified U-Net in Fig. 2. Of note in com-

parison to the original U-Net is the use of BatchNorm, residual connections in 
each convolutional block, the 3 channel neighbor patches input and the sigmoid 
output limitation. Padding is also used after convolutions.

with Dice, by comparisons with the manual gold standard. Dice can be 
defined as:
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where the sums run over the N voxels, of the predicted binary segmen-

tation volume 𝑝𝑖 ∈ 𝑃 and the ground truth binary volume 𝑔𝑖 ∈ 𝐺. For 
conversion from a metric to a loss function, one can simply optimize 
1 − 𝐷𝑖𝑐𝑒, therefore optimizing a segmentation overlap metric. This is 
referred here as Dice Loss.

To take into account background information, a Softmax of two-

channels representing background and foreground can be used as an 
output. In this case, Generalized Dice Loss (GDL) [20] and Bound-

ary Loss, a recent proposal of augmentation to GDL from Kervadec et 
al. [33] were considered as loss options.

Generalized Dice Loss weights the loss value by the presence of a 
given label in the target, giving more importance to less present labels. 
This solves the class imbalance problem that would emerge when using 
Dice Loss while including background as a class.
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Boundary Loss takes into consideration alongside the “regional” loss 
(e.g. GDL), the distance between boundaries of the prediction and tar-

get, which does not give any weight to the area of the segmentation. 
Kervadec’s work suggests that a loss functions that takes into account 
boundary distance information can improve results, specially for unbal-

anced datasets. However, one needs to balance the contribution of both 
components with a weight, defined as 𝛼 in the following Boundary Loss 
(B) equation:

𝐵(𝑝, 𝑔) = 𝛼 𝐺(𝑝, 𝑔) + (1 − 𝛼) 𝑆(𝑝, 𝑔) (2)

where G is GDL, regional component of the loss function, and S is the 
surface component, that operates on surface distances. The weight fac-

tor 𝛼 changes from epoch to epoch. The weight given to the regional 
loss is shifted to the surface loss, with 𝛼 varying from 1 in the first 
epoch to 0 in the last epoch. We followed the original implementation 
in [33].

4.2. Consensus and post-processing

The consensus depicted in Fig. 2 consists of taking the average from 
the activations of all three CNNs. A more advanced approach of using a 
4th, 3D, U-Net as the consensus generator was also attempted.

After construction of the consensus of activations, a threshold is 
needed to binarize the segmentation. We noticed that sometimes, small 
structures of the brain similar to the hippocampus could be classified 
as false positives. To remove those false positives, a 3D labeling im-

plementation from [34] was used, with subsequent removal of small 
non-connected volumes, keeping the 2 largest volumes, or 1 if a second 
volume is not present (Fig. 2). This post processing is performed after 
the average consensus of all networks and threshold application.

5. Experiments and results

This section presents quantitative and qualitative comparisons with 
other methods in HarP and HCUnicamp. The appendix showcases more 
detailed experiments on the segmentation methodology, displaying dif-

ferences in Dice in the HarP test set, resulting from our methodological 
choices.

5.1. Quantitative results

In this section, we report quantitative results of our method and 
others from the literature in both HarP and HCUnicamp. For compar-

ison’s sake, we also trained an off-the-shelf 3D U-Net architecture, from 
Isensee et al. [9], originally a Brain Tumor segmentation work. Isensee’s 
architecture was trained with ADAM and HarP 3D center crops as input.

For the evaluation with the QuickNat [7] method, volumes and 
targets needed to be conformed to its required format, causing inter-

polation. As far as we know, the method does not have a way to return 
its predictions on the volume’s original space. DICE was calculated with 
the masks on the conformed space. Note that QuickNat performs seg-

mentation of multiple brain structures.

5.1.1. HarP

The best hold-out mean Dice is 0.9133. In regards to specific 
Alzheimer’s classes in the test set, our method achieves 0.9094 Dice for 
CN, 0.9378 for MCI and 0.9359 for AD cases. When using a hold-out 
approach in a relatively small dataset such as HarP, the model can be 
overfitted to better results in that specific test set. With that in mind, 
we also report results with cross validation. 5-fold training is used, ap-

plied to all three network’s training. With 5-fold our model achieved 
0.90 ±0.01 Dice. Results reported by other works are present in Table 1. 
Our methodology has similar performance to what is reported by Ata-

loglou et al.’s recent, simultaneous work [18]. Interestingly, the initial 
methodology of both methods is similar, in the use of multiple 2D CNNs.
5

Table 1. Reported testing results for HarP. This work 
is named E2DHipseg. Results with * were calculated 
following a 5-fold cross validation.

Deep learning methods HarP (DICE)

3D U-Net - Isensee et al. [9] (2017) 0.86

Hippodeep - Thyreau et al. [8] (2018) 0.85

QuickNat - Roy et al. [7] (2019) 0.80

Ataloglou et al. [18] (2019) 0.90*

E2DHipseg (this work) 0.90*

Atlas-based methods

FreeSurfer v6.0 [5] (2012) 0.70

Chincarini et al. [13] (2016) 0.85

Platero et al. [14] (2017) 0.85

5.1.2. HCUnicamp

As described previously, the HCUnicamp dataset has lack of one of 
the hippocampi in many of its scans (Fig. 1), and it was used to examine 
the generalization capability of these methods. Table 2 has mean and 
standard deviation Dice for all HCUnicamp volumes, using both masks, 
or only one the left or right mask, with multiple methods. “with Aug.” 
refers to the use of augmentations in training. We also report Precision 
and Recall, per voxel classification, where positives are hippocampus 
voxels and negatives are non hippocampus voxels. Precision is defined 
by 𝑇𝑃∕(𝑇𝑃 + 𝐹𝑃 ) and Recall is defined by 𝑇𝑃∕(𝑇𝑃 + 𝐹𝑁), where TP 
is true positives, FP are false positives and FN are false negatives. All 
tests were run locally. Unfortunately, we were not able to reproduce 
Ataloglou et al.’s method for local testing.

Our method performed better than other recent methods on the 
literature in the HCUnicamp dataset, even though HCUnicamp is not 
involved on our methodology development. However, no method was 
able to achieve more than 0.8 mean Dice in epilepsy patients. The high 
number of false positives due to hippocampus removal is notable by the 
low left and right DICE, and low precision. The impact of additional 
augmentations was not statistically significant in the epilepsy domain.

Our method takes around 15 seconds on a mid-range GPU and 3 
minutes on a consumer CPU to run, per volume. All the code used on its 
development is available in github .com /MICLab -Unicamp /e2dhipseg, 
with instructions for how to run it in an input volume, under MIT 
license. A free executable version for medical research use, without 
environment dependencies, is available on the repository. To avoid 
problems with different head orientations, there is an option to use 
MNI152 registration when predicting in a given volume. Even when 
performing registration, the output mask will be in the input volume’s 
space, using the inverse transform. In regards to pre-processing require-

ments, our method requires only for the volume to be a 3D MRI in the 
correct orientation. The automatic MNI152 registration option solves 
this problem, in a similar way to Hippodeep. A GPU is recommended 
for faster prediction but not necessary.

5.2. Adaptation to HCUnicamp

Additional experiments were performed now involving HCUnicamp 
data in training, to try and learn to recognize the resection. The exper-

iments involved making a hold-out separation of HCUnicamp. In the 
previous experiment, all volumes were involved in the testing and not 
used for training of any method. In this one, hold-out with 70% train-

ing, 10% validation and 20% testing is performed with balance between 
control and patients, to allow for training. Note that these results are not 
comparable with other method’s results or even or own results present 
in Table 2, since the dataset is different and we are now training on 
part of HCUnicamp. To avoid confusion, the hold-out subsets will be re-

ferred to as HCU-Train and HCU-Test. Experiments were also performed 
including only control volumes or only patient volumes, with the same 
hold-out approach (Table 3). Results improve when training on HCU-

nicamp volumes, but the high standard deviation still shows that the 
method is failing to recognize resections.

http://github.com/MICLab-Unicamp/e2dhipseg
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Table 2. Locally executed testing results for HCUnicamp. All 190 volumes from the dataset are included, and no model saw it on training. 
The 3D U-Net here is using the same weights from table 1. QuickNat performs whole brain multitask segmentation, not only hippocampus.

HCUnicamp (Controls)

Method Both (Dice) Left (Dice) Right (Dice) Precision Recall

3D U-Net - Isensee et al. [9] (2017) 0.80 ± 0.04 0.81 ± 0.04 0.78 ± 0.04 0.76 ± 0.10 0.85 ± 0.06
Hippodeep - Thyreau et al. [8] (2018) 0.80 ± 0.05 0.81 ± 0.05 0.80 ± 0.05 0.72 ± 0.10 0.92 ± 0.04
QuickNat - Roy et al. [7] (2019) 0.80 ± 0.05 0.80 ± 0.05 0.79 ± 0.05 0.71 ± 0.11 𝟎.𝟗𝟐± 𝟎.𝟎𝟒
E2DHipseg without Aug. 0.82 ± 0.03 0.83 ± 0.03 0.82 ± 0.03 𝟎.𝟕𝟖± 𝟎.𝟏𝟎 0.88 ± 0.06
E2DHipseg with Aug. 𝟎.𝟖𝟐± 𝟎.𝟎𝟑 𝟎.𝟖𝟑± 𝟎.𝟎𝟑 𝟎.𝟖𝟐± 𝟎.𝟎𝟒 0.78 ± 0.10 0.89 ± 0.06

HCUnicamp (Patients)

3D U-Net - Isensee et al. [9] (2017) 0.74 ± 0.08 0.48 ± 0.39 0.56 ± 0.36 0.66 ± 0.12 0.87 ± 0.07
Hippodeep - Thyreau et al. [8] (2018) 0.74 ± 0.08 0.48 ± 0.39 0.57 ± 0.37 0.63 ± 0.12 0.91 ± 0.06
QuickNat - Roy et al. [7] (2019) 0.71 ± 0.08 0.47 ± 0.38 0.56 ± 0.36 0.59 ± 0.12 𝟎.𝟗𝟐± 𝟎.𝟎𝟔
E2DHipseg without Aug. 𝟎.𝟕𝟕± 𝟎.𝟎𝟕 0.49 ± 0.40 0.58 ± 0.37 𝟎.𝟔𝟗± 𝟎.𝟏𝟏 0.88 ± 0.07
E2DHipseg with Aug. 0.76 ± 0.07 𝟎.𝟓𝟎± 𝟎.𝟒𝟎 𝟎.𝟓𝟖± 𝟎.𝟑𝟕 0.68 ± 0.11 0.89 ± 0.07
Table 3. E2DHipseg with networks trained in HCU-Train. Training is performed 
in all volumes, only patients or only controls, and testing is done in HCU-Test, 
also selecting for patients, controls, or all.

Trained on Both (Dice) Left (Dice) Right (Dice)

Patients 0.84 ± 0.04 0.60 ± 0.41 0.56 ± 0.42
Controls and Patients 0.86 ± 0.05 0.71 ± 0.36 0.74 ± 0.34
Controls 0.90 ± 0.01 0.89 ± 0.02 0.90 ± 0.01

Table 4. This table compares training in one dataset and testing in the other. 
Betters results are achieved when involving both domains in training.

Trained on Tested on Both (Dice) Left (Dice) Right (Dice)

Harp-Train HCU-Test 0.79 ± 0.07 0.65 ± 0.33 0.68 ± 0.31
HCU-Train HarP-Test 0.50 ± 0.29 0.50 ± 0.31 0.50 ± 0.29
Harp-Train + HCU-Train HarP-Test 0.89 ± 0.01 0.89 ± 0.01 0.89 ± 0.02
Harp-Train + HCU-Train HCU-Test 0.85 ± 0.04 0.69 ± 0.35 0.73 ± 0.33

Another experiment attempts to learn from both datasets at the same 
time (Table 4). The dataset now is the concatenation of HarP and HCU-

nicamp. The datasets were mixed together with a 70% training, 10% 
validation and 20% testing hold-out. The presence of patients and con-

trols is balanced between the sets. Also included are results from testing 
in a different domain while training in other.

E2DHipseg was able to achieve good Dice in both the HarP and 
HCU when both are involved on training. However, while looking at 
only left or right results, poor Dice standard deviation is still present, 
meaning problems with resection are still happening. While examining 
predictions from training only in HCU and testing in HarP, in many 
cases the method predicted a resection was present in darker scans, 
when it wasn’t, resulting in high false negatives.

5.3. Qualitative results

While visually inspecting HarP results, very low variance was found. 
We noted no presence of heavy outliers. Other methods present similar, 
stable results. (Fig. 4.)

However, in HCUnicamp, way more errors are visible in the worst 
segmentations in Fig. 5(b). Specially where the hippocampus is re-

moved. Other methods have similar results, with false positives in vox-

els where the hippocampus would be in a healthy subject or Alzheimer’s 
patient. As expected, the best segmentation, displayed in Fig. 5(a), was 
in a control, healthy subject.

6. Discussion

Regarding the Consensus approach from our method, most of the 
false positives some of the networks produce are eliminated by the av-

eraging of activations followed by thresholding and post processing. 
This approach allows the methodology to focus on good segmentation 
on the hippocampus area, without worrying with small false positives 
in other areas of the brain. It was also observed that in some cases, one 
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of the networks fails and the consensus of the other two “saves” the 
result.

The fact that patches are randomly selected and augmented in run-

time means they are mostly not repeated in different epochs. This is 
different to making a large dataset of pre-processed patches with aug-

mentation. We believe this random variation during training is very 
important to ensure the network keeps seeing different data in different 
epochs, improving generalization. This idea is similar to the Dropout 
technique [35], only done in data instead of weights. Even with this 
patch randomness, re-runs of the same experiment resulted mostly in 
the same final results, within 0.01 mean Dice of each other.

As visible on the results of multiple methods, Dice when evaluat-

ing using the HCUnicamp dataset is not on the same level as what is 
seen on the public benchmark. Most methods have false positives on 
the removed hippocampus area, in a similar fashion to Fig. 5(b). The 
fact that QuickNat and Hippodeep have separate outputs for left and 
right hippocampus does not seem to be enough to solve this problem. 
We believe the high false positive rate is due to textures similar to the 
hippocampus, present in the hippocampus area, after its removal.

Final experiments attempt to adapt the methodology to Epilepsy vol-

umes. Training in HCUnicamp improved results, but the high standard 
deviation and mistakes on hippocampus resections are still present. A 
similar story is seen while analyzing results from concatenating the 
HarP train and HCU-Train dataset in training. The method was able 
to achieve good overall Dice in both the HarP test set and HCU-Test, 
of 0.89 and 0.85, but while analyzing right and left hippocampus sep-

arately the high standard deviation due to missed resections was still 
present. The resulting mean Dice was low due to cases of false posi-

tives in resections on the left or right Dice resulting in 0 Dice, pulling 
the mean Dice down drastically. This was confirmed in the qualitative 
results and does not happen when training and testing in HCUnicamp 
controls or HarP, as showcased by the similar, low standard deviation 
between overall Dice and left/right Dice. This problem could possibly 
be solved with a preliminary hippocampus presence detection phase in 
future work, but this is not in the scope of this paper, since HCUnicamp 
was used here as a test set and this approach would be a bias to the test 
set.

7. Conclusion

This paper presents a hippocampus segmentation method includ-

ing consensus of multiple U-Net based CNNs and traditional post-

processing, successfully using a new optimizer and loss function from 
the literature. The presented method achieves state-of-the-art perfor-

mance on the public HarP hippocampus segmentation benchmark. The 
hypothesis was raised that current automatic hippocampus segmenta-

tion methods, including our own, would not have the same performance 
on our in-house epilepsy dataset, with many cases of hippocampus 
removal. Quantitative and qualitative results show failure from those 
methods to take into account hippocampus removal, in unseen epilepsy 
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Fig. 4. Multiview and 3D render (approximate) of our (a) best and (b) worst cases while evaluating in the HarP test set. Prediction in green, target in red and overlap 
in purple.
data. This raises the concern that current automatic hippocampus seg-

mentation methods are not ready to deal with hippocampus resection 
due to epilepsy treatment. We show that training in the epilepsy data 
does improve results, but there is still room for improvement. In future 
work, improvements can be made to our methodology to detect the re-

moval of the hippocampus as a pre-processing step.
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